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Bayesian nonparametric model for weighted data using
mixture of Burr XII distributions

Soleiman Khazaei1, Soghra Bohlouri Hajjar2

Abstract

In this paper, we develop a Bayesian nonparametric approach for analyzing weighted sur-
vival data. Specifically, we employ the Dirichlet Process Burr XII Mixture Model (DPBMM)
to estimate the underlying density and survival functions when the observed data are weighted.
Parameters are inferred using Markov chain Monte Carlo (MCMC) methods, and the Metro-
polis-Hastings algorithm is applied to obtain de-biased samples from the weighted obser-
vations. Numerical illustrations are provided using both simulated and real lifetime data,
including the presence of censored observations. The performance of the proposed method
is compared with classical kernel density estimates to demonstrate its flexibility in modeling
complex and heavy-tailed distributions.

Key words: Bayesian nonparametric, weighted data, Dirichlet process, mixture model, Burr
XII distribution, survival data.

1. Introduction

Building upon the foundational ideas introduced by Fisher (1934), the concept of weigh-
ted distributions has been further developed. Rao (1985) and Rao et al. (1915) recognized
the importance of a unified framework and identified a variety of sampling scenarios that
could be effectively described using weighted distributions Patil (1978). Consider a non-
negative random variable X with a natural density function f (x;θ), where θ ∈Θ denotes the
natural parameter and Θ is the parameter space. A new random variable is then defined with
a density function g(x;θ), specified as follows:

g(x;θ) =
w(x;θ) f (x;θ)

E[w(X ;θ)]
, E[w(X ;θ)]< ∞, x≥ 0, (1)

This new variable is referred to as a weighted random variable with respect to X , and
g(x;θ) is called the weighted density function corresponding to f (x;θ). The function
w(x;θ) is a non-negative function of x, and E[w(X ;θ)] denotes its mathematical expec-
tation under the distribution of X .

If w(x;θ) = x, the resulting weighted distribution is known as the length-biased dis-
tribution. For instance, studies involving family size as a sampling factor often produce
length-biased samples. In Zelen and Feinleib (1969), this distribution is applied to the early
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detection of breast cancer. Similarly, Patil and Rao (1977) used the length-biased distribu-
tion to study human family structures and wildlife populations. Later, Patil and Rao (1978)
introduced a broader class of distributions of the form given in Equation 1, incorporating ar-
bitrary non-negative weight functions w(x;θ), and provided several practical examples. For
additional examples of weighted distributions and their applications, see Blumenthal (1967),
Gupta and Kirmani (1990), Mahafoud and Patil (1982), Patil and Rao (1977), Patil and Rao
(1978). This paper adopts a Bayesian nonparametric framework to model weighted data
derived from such distributions. Specifically, we use the Dirichlet Process Mixture Model
(DPMM), a popular Bayesian nonparametric approach, and apply it to survival analysis.

Burr (1942) introduced a family of distributions, from which twelve distinct types (named
Burr distributions Type I to XII) can be derived as special cases. Among them, the Burr Type
XII (Burr XII) distribution is widely used in survival studies.

Let κB(t|c,k) and KB(t|c,k) denote the probability density function (p.d.f.) and cumula-
tive distribution function (c.d.f.) of the Burr XII distribution, respectively. These functions,
which will be employed in our mixture model, are defined as:

κB(t|c,k) = ck
tc−1

(1+ tc)k+1 , c,k > 0, t > 0 (2)

KB(t|c,k) = 1− (1+ tc)−k (3)

with the parameter space

Θ = {(c,k);0 < c < ∞,0 < k < ∞}.

In Hatjispyros et al. (2017) , the Dirichlet Process Mixture Model (DPMM) is employed
for density estimation under length-biased data. The authors use a log-normal distribution
as the kernel, with a fixed distribution assigned to its shape parameter.

In contrast, we consider a DPMM with the Burr Type XII (Burr XII) distribution as
the kernel, which includes two shape parameters treated as random variables in the model.
Despite the increasing adoption of nonparametric methods in data analysis, many existing
approaches struggle to handle weighted data effectively. Key limitations include inflexi-
bility in capturing complex distributional shapes, poor modeling of heavy-tailed behavior,
and a lack of adaptability to hidden heterogeneity. Traditional parametric and classical non-
parametric models often fail to accurately represent the underlying structure of such data,
particularly when distributions exhibit skewness or heavy tails. The Burr XII distribution
is highly flexible, making it well-suited for modeling diverse distributional forms, espe-
cially those with heavy tails. However, its integration into mixture models, particularly
within a Bayesian nonparametric framework, has received limited attention. This research
addresses this methodological gap by introducing a Bayesian nonparametric model based
on a Dirichlet Process Mixture of Burr XII distributions. The proposed framework offers
enhanced flexibility and robustness for analyzing weighted data, enabling more accurate
characterization of the complex, heterogeneous structures frequently encountered in real-
world applications.
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The Burr XII distribution has support on R+ and serves as a generalization of both the
log-normal and Weibull distributions. These characteristics make it particularly suitable
for survival analysis (Bohlouri Hajjar and Khazaei (2018), Lanjoni et al. (2016), Rao et al.
(2015) and Rodriguez (1977)).

In Bohlouri Hajjar and Khazaei (2018), the Burr XII distribution is used as the ker-
nel in a DPMM framework, where the survival function and hazard rate are computed for
both simulated and real-world datasets. In Joudaki et al. (2024), a Dirichlet Process Mix-
ture Model (DPMM) with a three-parameter Burr XII kernel was considered. Their study
investigates survival analysis using this flexible modeling approach, demonstrating its ef-
fectiveness in capturing complex features of survival data. Bayesian estimation methods for
hybrid censored data from the Burr XII distribution using various loss functions were dis-
cussed in Hassan (2021). These methods were particularly valuable for managing complex
censoring scenarios. In Nurul et al. (2024), a DPMM-based approach was proposed for
clustering mixed-type data with cluster-specific covariance matrices, effectively addressing
intricate data structures. Moreover, Michael et al. (2023) applied DPMMs to longitudinal
data involving repeated attempts, successfully modeling the complexities inherent in such
datasets.

In the next section, we present the preliminary concepts and methodology, followed by a
detailed introduction of the proposed model. Section 4 describes the use of Gibbs sampling
to estimate the original (unweighted) distributions from their corresponding weighted forms.
Section 5 demonstrates the application of our approach to both simulated and real datasets.
Finally, Section 6 summarizes our findings and conclusions.

2. Preliminary and Methodology

We aim to estimate the density and survival functions by considering a general case of
the weight function w(x;θ). To avoid computing the often intractable normalizing constant,
our strategy is to model g(x;θ) directly and then infer f (x;θ), using the fact that g(x;θ) ∝

w(x;θ) f (x;θ).
If we assume that f (x;θ) belongs to a parametric family, then both f (x;θ) and g(x;θ)

are known up to the normalizing constant, which may not be analytically tractable.
Let w(·;θ) be a general weight function; an essential condition for modelling F(·;θ)

through G(·;θ)
(
F(·;θ) and G(·;θ) denote the distribution functions corresponding to

f (·;θ) and g(·;θ), respectively
)

is∫
∞

0
w(x)−1g(x)dx < ∞, (4)

because f is a distribution function.
Through the invertibility implied by Equation (4), it becomes possible to reconstruct

the distribution function F from G. In the Bayesian nonparametric framework, we place
a suitable nonparametric prior on g, relying on the relationship defined by Equation (4).

The key question, however, is how the posterior structure derived from modeling g di-
rectly can be transformed into the corresponding posterior structure for f .
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The first step involves developing a method to convert a weighted sampler into an un-
weighted sample. Once this conversion is achieved, inference about the posterior distribu-
tions can be made.

The Markov Chain Monte Carlo (MCMC) approach is an indirect method for simulat-
ing samples from complex probability distributions. One of the key MCMC methods is
the Metropolis-Hastings algorithm Hatjispyros et al. (2017), which generates samples from
a target distribution by utilizing its full joint density function along with proposal distribu-
tions for each of the variables of interest.

Algorithm 1: Metropolis-Hastings algorithm

1. Initialize with x(0) ∼ q(x)

2. for i = 1,2, . . . do
Propose xcand ∼ q(x(i)|x(i−1))

Calculate the acceptance probability:

α(xcand |x(i−1)) = min
{

1,
q(x(i−1)|xcand)π(xcand)

q(xcand |x(i−1))π(x(i−1))

}
Generate u∼ Uniform(0,1)

if u < α then
x(i)← xcand

else
x(i)← x(i−1)

end if
end for.

Here, q(x) represents the weighted distribution. Hatjispyros et al. (2017) demon-
strated how the Metropolis-Hastings algorithm can be used to convert a length-biased sam-
ple into an unbiased one. Following a similar strategy, we aim to apply this algorithm using
a general weight function, as defined in Equation (4), to transform samples from a weighted
distribution into their unweighted counterparts. This methodology is particularly important
when dealing with complex models where the weighted distribution arises due to inherent
sampling bias.

Suppose that y1,y2, . . . ,yN denote a random sample from g. The Metropolis-Hastings
algorithm is used to convert this sample into a sample from f (x;θ) ∝ w(x;θ)−1g(x;θ). In
the algorithm, we assume that g(·) is replaced by q(·) in Algorithm 1 with the acceptance
probability

min
{

1,
w−1(y j+1)

w−1(x j)

}
.
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If x j denotes the current sample from f (x), then

x j+1 = y j+1 with probability min
{

1,
w−1(y j+1)

w−1(x j)

}
, (5)

x j+1 = x j otherwise.

The transition density is

P(x j+1|x j) = min
{

1,
w−1(y j+1)

w−1(x j)

}
g(x j+1)+{1− r(x j)}1(x j+1 = x j),

where

r(x) =
∫

min
{

1,
w−1(x∗)
w−1(x)

}
g(x∗)dx∗.

We can outline the general methodology as follows:

1. Sample Generation: Consider (y1, . . . ,yn) as a sample from g, to which we assign
a suitable nonparametric prior.

2. Posterior Inference: Using MCMC methods, posterior samples from the random mea-
sure Π(dg|y1, . . . ,yn) and other relevant parameters are obtained. Consequently, a se-
quence {yl

n+1}, l = 1,2, . . . from the posterior predictive density g(y|y1, . . . ,yn) will
be generated.

3. Weighted Proposal Values: The sequence {yl
n+1} serves as proposal values in a Metro-

polis-Hastings chain whose stationary distribution is the weighted posterior predic-
tive, i.e.,

{yl
n+1} ∝ w(y)−1g(y|y1, . . . ,yn).

Using Equation (5), we generate the corresponding values {xl
n+1} at iteration l.

4. Final Sample: The resulting sequence {xl
n+1} constitutes a sample from the posterior

predictive distribution f , which corresponds to the unweighted density.

3. The model and inference

In this section, we aim to model g(x;θ). Modeling the weighted distribution g(x) within
the Bayesian nonparametric framework is based on an infinite mixture model Lo (1984),
which takes the following form:

gP(y) =
∫

κ(y;θ)P(dθ), (6)

where P is a discrete probability measure and κ(y;θ) is a kernel density defined on (0,∞)

for all θ in the parameter space. This kernel satisfies the condition∫
∞

0
w−1(y;θ)κ(y;θ)dy < ∞.
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By choosing the Burr(XII) density (with parameters c and k) as the kernel of the mixture
model, we obtain

gc,k,P(y) =
∫
R

κB(y|c,k)P(dc,dk),

where κB(y|c,k) is the Burr(XII) density and P is a discrete random probability measure.
Suppose that

P∼ DP(υ ,P0),

where DP(υ ,P0) denotes the Dirichlet process with precision parameter υ > 0 and base
measure P0 Ferguson (1983). We refer to this mixture model as the Dirichlet Process
Burr(XII) Mixture Model (DPBMM).

The hierarchical representation of the DPBMM can be expressed as follows:

y|c,k ∼ κB(y|c,k),
(c,k)|P ∼ P,

P|υ ,P0 ∼ DP(υ ,P0). (7)

Suppose that the base distribution P0 is the prior distribution for the joint distribution of c
and k. By choosing Burr(XII) distribution as the kernel, P0 that yields a closed-form expres-
sion for

∫
κB(.|c,k)P0(dc,dk) is not available. Moreover, we choose multiple distributions

of Uniform(0,φ) and Exponential with the parameter γ for P0, i.e.,

P0(c,k|φ ,γ) = Unif(c|0,φ)×Exp(k|γ). (8)

This choice achieves the modeling goals. Considering the hyperparameters γ and φ

as random, we choose prior distributions Pareto(aφ ,bφ ) and IGamma(aγ ,bγ) for them, re-
spectively. We set aφ = aγ = d and chose d = 2, which makes the variance of the Pareto
distribution infinite. This allows the distribution to accommodate a wide range of values.
The parameters bφ and bγ are determined by the data Bohlouri Hajjar and Khazaei (2018).

Finally, for any ti, i = 1, ...,n, representing lifetime data in a sample of n observations,
by considering DPBMM and selecting priors for parameters of the model we have

ti|ci,ki ∼ κB(ti|ci,ki), i = 1, ...,n,

(ci,ki)|P ∼ P,

P ∼ DP(ν ,P0),

P0|γ,φ ∼ Unif(c|0,φ)×Exp(k|γ), (9)

ν ,γ,φ ∼ Gamma(aν ,bν)× IGamma(aγ ,bγ)×Pareto(aφ ,bφ ).

After determining the model, we want to formulate how to sample from DPMMs by
Gibbs sampling. According to Kottas (2006), Gibbs sampling for drawing a sample from

[(θ1, . . . ,θn), υ , . . . | t]
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is based on the following full conditional distributions (brackets are used to indicate condi-
tional and marginal distributions):

(1) [(θi)|(θ−i,z−i),υ , ..., t], for i = 1, ...,n

(2) [(θ ∗j )|z,n∗,υ , ..., t], for j = 1, ...,n∗ (10)

(3) [υ |{(θ ∗j ), j = 1, ...,n∗},n∗, t], [...|{(θ ∗j ), j = 1, ...,n∗},n∗, t].

Here, t is the vector of failure time data. The θi’s are the parameters of the kernel in
DPMMs that will be analyzed.

Model (8) and the discreteness property of the Dirichlet process exhibit clustering
in the θ ’s. We present n∗ as the number of clusters among the θi’s, denoted by θ ∗j ’s. The
vector of indicators z = (z1, ...,zn) indicates the clustering configuration such that zi = j
when θi = θ ∗j .

Also, θ−i, which is used in (8), is defined as θ−i = (θ1,θ2, ...,θi−1,θi+1, ...,θn). Model
(12) is the same as model (8), with the difference that the vector of indicators z = (z1, ...,zn)

indicates the clustering configuration such that zi = j when θi = θ ∗j . Also, θ−i, which is
used in (8), is defined as θ−i = (θ1,θ2, ...,θi−1,θi+1, ...,θn).

4. Modeling

We apply the following algorithm to model the unweighted density f (x) from the weighted
density g(x). First, to generate a sample from g(x), the model’s parameters need to be esti-
mated. To this aim, we draw a sample from (ci,ki) and update zi for each ti.

In simulation-based parameter estimation, we use the Gibbs sampler, which includes
two steps to reach the goal.

Algorithm 2 : Gibbs sampler

1. Initialize with θ
(0) ∼ f (θ)

2. For i = 1,2, ... do

θ
(i)
1 ∼ f (θ1|θ (i−1)

2 ,θ
(i−1)
3 , ...,θ

(i−1)
d ,D),

...

θ
(i)
d ∼ f (θd |θ

(i)
1 ,θ

(i)
2 , ...,θ

(i)
d−1,D),

where θ1, ...,θd are model parameters, and D is the vector of observations. The values at
iteration i are sampled from the conditional distributions using the most recent values of the
other parameters.

Now, the model will be applied to lifetime data with right-censored observations, which
are very common in survival studies. To calculate the related distributions, the data are
divided into uncensored and censored observations.
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1- Uncensored data: For uncensored data (tio), the conditional posterior density of
(ci,ki) is a mixture distribution Neal (2003):

f (ci,ki | {(ci′ ,ki′); i ̸= i′},ν ,γ,φ , tio) =
qo

0 ho(ci,ki | φ ,γ, tio)+∑
n∗(i)
j=1 n∗(i)j qo

jδc∗j ,k
∗
j

qo
0 +∑

n∗(i)
j=1 n∗(i)j qo

j

,

where qo
j = kB(tio | c∗j ,k∗j ), and

qo
0 = ν

∫
φ

0

∫
∞

0
kB(tio | c,k)G0(c,k)dcdk

=
ν

φ

∫
φ

0

ctc−1
io

(1+ tc
io)

(∫
∞

0

ke−k/γ

(1+ tc
io)

k dk

)
dc

=
ν

φ

∫
φ

0

ctc−1
io

(1+ tc
io)
(

ln(1+ tc
io)+

1
γ

) dc,

where the last integration can be computed numerically, and

ho(ci,ki | γ,φ , tio) ∝ kB(tio | ci,ki)P0(ci,ki | γ,φ) ∝ [ci | γ,φ , tio][ki | ci,γ,φ , tio],

with
[ci | γ,φ , tio] ∝ cit

ci−1
io I(0,φ)(ci), i = 1, . . . ,n,

and

[ki | ci,γ,φ , tio] ∝ Gamma

(
· | 2, 1

1
γ
+ ln(1+ tci

io)

)
.

2- Right censored data: For right-censored data (tic), the conditional posterior density
of (ci,ki) is

f (ci,ki | {(ci,ki); i ̸= i′},ν ,γ,φ , tic) =
qc

0 hc(ci,ki | φ ,γ, tic)+∑
n∗(i)
j=1 n∗(i)j qc

jδc∗j ,k
∗
j

qc
0 +∑

n∗(i)
j=1 n∗(i)j qc

j

,

where qc
j = 1−KB(tic | c∗j ,k∗j ), and

qc
0 = ν

∫
φ

0

∫
∞

0

(
1−KB(tic | c,k)

)
G0(c,k)dcdk

=
ν

φγ

∫
φ

0

∫
∞

0

e−k/γ

(1+ tc
ic)

k dk dc

=
ν

φγ

∫
φ

0

(
1
γ
+ ln(1+ tc

ic)

)
dc,

where the last integration can be computed numerically. Using the property of censored
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data, we have

hc(ci,ki | γ,φ , tic) ∝
(
1−KB(tic | ci,ki)

)
G0(ci,ki)

∝ [ci | γ,φ , tic][ki | ci,γ,φ , tic]

=
I(0,φ)(ci)

φγ

1
1
γ
+ ln(1+ tci

ic )
ki exp

{
− ki

( 1
1
γ
+ ln(1+ tci

ic )

)}

=
I(0,φ)(ci)

φγ

1
1
γ
+ ln(1+ tci

ic )
×Gamma

(
ki | 2,

1
1
γ
+ ln(1+ tci

ic )

)
.

We use the slice sampling method to sample from the first part of the above expression.
Therefore, using this MCMC approach, a sample from hc(ci,ki | φ ,γ, tic) can be obtained.
Now, for both observed and censored data, (ci,ki) for i = 1, . . . ,n can be updated iteratively
and improved. In a general form, (c∗j ,k

∗
j ) can be updated conditional on φ ,γ , and t as

follows:

f (c∗j ,k
∗
j | φ ,γ, t,n∗) ∝ G0(c∗j ,k

∗
j | γ,φ) ∏

{io:sio= j}
kB(tio | c∗j ,k∗j ) ∏

{ic:sic= j}

(
1−KB(tic | c∗j ,k∗j )

)
∝ [c∗j | γ,φ , tio][k∗j | c∗j ,γ,φ , tic] ∏

{ic:sic= j}

1

(1+ t
c∗j
ic )

k∗j

∝ c∗j
no

j I(0,φ)(c
∗
j) ∏
{io:sio= j}

t
c∗j−1
io

1+ t
c∗j
io

×Gamma(no
j +1,B∗), (11)

where

B∗ = ∑
{io:sio= j}

(
1
γ
+ ln(1+ t

c∗j
io )

)
+ ∑
{ic:sic= j}

ln(1+ t
c∗j
ic ),

and no
j is the number of observed data points in cluster j.

The key task in generating a sample from Equation (13) is drawing from the first part of
the equation. Sampling from the gamma distribution is straightforward. To sample from

[c∗j | φ ,γ, t] ∝ c∗j
no

j I(0,φ)(c
∗
j) ∏
{io:sio= j}

t
c∗j−1
io

1+ t
c∗j
io

,

auxiliary variables W = {wio : {io : sio = j}} are introduced such that

[c∗j ,W | φ , tio] = c∗j
no

j I(0,φ)(c
∗
j) ∏
{io:sio= j}

I
(0,

t
c∗j−1
io

1+t
c∗j
io

)

(wio).

By marginalization over W , [c∗j | φ , tio] is obtained for j = 1, . . . ,n∗. Moreover, wio are
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uniform variables on (0, t
c∗j−1
io

1+t
c∗j
io

). Therefore,

[c∗j | φ , t] = c∗j
no

j I(B,φ)(c
∗
j),

where B = max{0, ln(wio)
1+tio

}. Drawing from [c∗j | φ , t] is now straightforward.
Subsequently, following the approach in Escobar and West (1995), φ ,γ , and ν are up-

dated. Introducing a latent variable u such that

[u | ν , t] = Beta(ν +1,n),

we have

[ν | u,n∗, t] = pGamma(aν +n∗,bν − ln(u))+(1− p)Gamma(aν +n∗−1,bν − ln(u)),

where
p =

aν +n∗−1
n(bν − ln(u))+aν +n∗−1

.

To update φ , we have

[φ | c∗,k∗] = [φ ][c∗,k∗ | φ ] =
2b2

φ

φ 3 I(bφ ,∞)(φ)
n∗

∏
j=1

1
φ

I(0,φ)(c
∗
j) =

2b2
φ

φ n∗+3 I(b∗,∞)(φ),

where b∗ = max{bφ ,max1≤ j≤n∗ c∗j}, implying

[φ | c∗,k∗] = Pareto(φ | 2+n∗,b∗).

Repeating this technique, γ is updated as

[γ | c∗,k∗] = [γ]
n∗

∏
j=1

[k∗j | γ] = IGamma(n∗+2,bγ +
n∗

∑
j=1

k∗j ).

Thus, all conditional distributions required for Equation (8) can now be computed.

5. Data illustrations

We evaluate the performance of the proposed model by applying it to three simulated
datasets, each with a sample size of n= 200. For model comparison, we consider alternative
approaches from the literature. Gibbs sampling is implemented with a total of N = 15,000
iterations, discarding the initial 1,000 as burn-in, and applying thinning by retaining every
20th iteration. Assuming a sufficiently large sample size, we place a Gamma(1,0.001)
prior on the concentration parameter α , allowing the model to infer an appropriate number
of clusters based on the data.

To quantify the deviation between estimated and true models, we compute numerical
indices using both Euclidean and Hellinger distance metrics that have been widely used in
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similar studies:

dE( f , f̂ ) =

√
n

∑
i=1

(
f (ti)− f̂ (ti)

)2
(12)

dH( f , f̂ ) =

√
n

∑
i=1

(√
f (ti)−

√
f̂ (ti)

)2

. (13)

Here, f denotes the true function, which may be a density, survival, or hazard function,
while f̂ represents its estimate obtained from the MCMC output.

We generate samples of size n = 200 from the following distributions:

(i) Mixture of Burr distributions with 2 parameters (B2M):

0.4×Burr(c = 25,k = 10)+0.6×Burr(c = 7,k = 4).

(ii) Mixture of lognormal distributions (LNM):

0.2×LN(µ1 = 0,σ2
1 = 0.15)+0.3×LN(µ2 = 1,σ2

2 = 0.02)+0.5

×LN(µ3 = 2,σ2
3 = 0.04).

(iii) Mixture of Weibull distributions (WM):

0.4×Weibull(α = 1,λ = 0.25)+0.6×Weibull(α = 6,λ = 0.5).

Here, Burr(c,k) denotes the Burr Type XII distribution with shape parameter c and
scale parameter k; LN(µ,σ2) denotes the lognormal distribution with scale parameter µ

and shape parameter σ ; and Weibull(α,λ ) refers to the Weibull distribution with shape
parameter α and scale parameter λ .

Table 1 presents the computed index values for the density, survival, and hazard func-
tions under the Dirichlet Process Mixture Model (DPMM) with different kernel choices,
evaluated across the three simulated datasets. Details of the DPWM, DPLNM, and DPB2M
models are provided in references Hassan et al. (2021) and Cheng and Yuan (2013). The
results in Table 1 indicate that the DPB2M model achieves a better fit compared to the other
models based on the simulated datasets.
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Table 1. Deviance metrics dE (dH(·, ·̂)) for DPMMs with different kernels. Values in paren-
theses are Hellinger distances.

Dataset Metric DPWM DPLNM DPB2M

I

f (t) 1.553 (1.126) 1.019 (0.522) 6.307 (4.015)

S(t) 0.602 (0.467) 0.295 (0.213) 3.276 (1.658)

h(t) 23.097 (4.031) 10.160 (1.473) 33.559 (8.834)

II

f (t) 1.448 (1.224) 0.373 (0.309) 1.901 (1.709)

S(t) 0.650 (0.471) 0.195 (0.144) 1.692 (1.088)

h(t) 5.542 (2.489) 1.788 (0.668) 7.407 (3.832)

III

f (t) 2.218 (0.669) 4.762 (1.184) 2.607 (0.767)

S(t) 0.399 (0.213) 0.321 (0.198) 0.368 (0.206)

h(t) 8.281 (1.053) 13.017 (1.695) 13.809 (1.558)

Note that the values in parentheses represent Hellinger distances.

5.1. Simulated data

In this subsection, we illustrate the capability of the DPB2M model to effectively model
weighted data and recover the corresponding unweighted distribution. For this purpose, we
consider two types of datasets: simulated data and real data.

Assume we are given a sample (x1, . . . ,xn), and our objective is to estimate its density
function. To evaluate the goodness of fit of the proposed model, we compare the resulting
density estimate with the following two density estimators, which are used in Hatjispyros et
al. (2017):

i) The classical kernel density estimate:

g̃h(x;(x1, . . . ,xn)) ∝
1
n

n

∑
j=1

N(x | x j,h2)1(0,+∞)(x)

ii) The kernel density estimate for indirect data (Jones’ kernel density estimate):

f̂J,h(x;(x1, . . . ,xn)) ∝
1
n

µ̂

n

∑
j=1

x−1
j N(x | x j,h2)1(0,+∞)(x)

where µ̂ is the harmonic mean of the sample (x1, . . . ,xn).



STATISTICS IN TRANSITION new series, December 2025 13

Figure 1. Simulated data from the log-normal distribution with parameters (0.5,0.5) and a sample size of
n = 100. In each figure, the true densities are shown with a solid line, and the kernel density estimates g̃h (a),(b)
and f̂J,h (c) with a dashed line.

These estimators are among the best-known nonparametric methods and provide a good
fit for both the weighted and unweighted data in our analysis. For the simulated datasets, the
Metropolis-Hastings algorithm was run for over 50,000 iterations, while the Gibbs sampler
was executed for 60,000 iterations, with a burn-in period of 10,000 iterations.

5.1.1 Length biased distribution of log-normal

Here, the first dataset is simulated from the log-normal distribution with parameters
(µ,σ2) = (0.5, 0.5). We know that the length-biased distribution of a log-normal with
parameters µ +σ2 and σ2 is again a log-normal with parameters µ and σ2 Patil and Rao
(1978).

By choosing the log-normal distribution as the kernel, we can illustrate the model’s
preference and the algorithm. This model was tested in Hatjispyros et al. (2017) for
length-biased data using simulated data from the Gamma distribution with DPMM when
the Gamma distribution was considered the kernel.

The results of the simulated data are shown in Figure 1. In panel (a), the histogram of
simulated log-normal (0.5,0.5) data is presented, and the true density curve is depicted with
a solid line, while the kernel density estimate g̃h is shown with a dashed line. The estimate
g̃h closely approximates the true underlying density.
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Figure 2. Simulated data from the Weibull distribution with parameters (α = 1,λ = 2) and sample size n = 100.
True densities are shown with a solid line, and the kernel density estimates g̃h and f̂J,h with a dashed line.

In panel (b), the histogram of the posterior predictive distribution of the data is shown
along with the true density curve (solid line). The real data here follows a log-normal
distribution with parameters (0,0.5), and Jones’ density estimate f̂J,h is represented by
a dashed line.

Panel (c) depicts the histogram of the transformed data to the unweighted scale, corre-
sponding to the indirect data estimate, which is shown with a dashed line. The distribution
of the unweighted data is also close to the true distribution, a log-normal with parameters
(0,0.5), demonstrating the model’s ability to recover the underlying density effectively.

5.1.2 Weighted distribution of Gamma

Here, we consider a Gamma(α,β ) distribution with the weight function w(x|a,b) =
xa exp(−x/b). By applying the weighting function, we obtain a new distribution that is
again a Gamma distribution, but with updated parameters (α +a,(β +b)/(bβ )).

The dataset is simulated from a weighted Gamma distribution, specifically Gamma(1,2)
using the weight function w(x) = exp(−x), which corresponds to a = 0 and b = 1. The cor-
responding unweighted version of this distribution is a Gamma distribution with parameters
α = 1 and β = 1.
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Figure 3. Real dataset of the widths of shrubs with size n = 46. (a) Histogram of data and estimated posterior
predictive density by DPBMM, and (b) histogram of de-biased data using the Metropolis-Hastings algorithm and
f̂J,h.

In Figure 2, panel (a), we present the histogram of the simulated data along with its true
density curve and the kernel density estimate g̃h. Panel (b) displays the histogram of the
predictive values, the corresponding kernel estimate g̃h, and the true density curve. In panel
(c), we present the histogram of the unweighted distribution obtained using the Metropolis-
Hastings algorithm, along with the estimate f̂J,h for this data.

5.2. Real data

In the previous section, Dirichlet Process Bayesian Mixture (DPB2M) models demon-
strated a good fit to the simulated data. Therefore, we now apply the flexibility of this
Bayesian nonparametric model to real datasets, namely the shrub width data and the blad-
der cancer data.

5.2.1 Widths of shrubs data

We consider the data that can be found in Muttlak and McDonald (1990) for applications
with real data. This data consists of 46 measurements of the width of shrubs that are sampled
by line-transect. In this sampling method, the probability of inclusion in the sample is
proportional to the width of the shrub, making it a case of length-biased sampling.

We can see the predictive values of the DPB2M model with the histogram and g̃h with
the dashed line in panel (a) of Figure 3, and also the unweighted version of the data values
and f̂J,h depicted in panel (b).
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Figure 4. Real dataset of bladder cancer patients with size n= 137. (a) Histogram of data and estimated posterior
predictive density by DPBMM, and (b) histogram of de-biased data using the Metropolis-Hastings algorithm and
f̂J,h.

5.2.2 Bladder cancer data

The next real dataset is survival data which includes censored values. This data is taken
from Lee and Wang (2003), page 231, which corresponds to remission times (in months) of
a random sample of bladder cancer patients. Properties of this data are: the total number of
observations 137, censored data 9, largest observation 46.12, and smallest observation 0.08.
For easier model fitting, we divided the data into 10 intervals.

In Ahmad et al. (2016), a parametric model was fitted to this dataset without considering
censored observations. This model is referred to as the length-biased weighted Lomax
distribution. The Lomax distribution is a special case of the Burr(XII) distribution. In
this section, we apply the DPBM model, which is a Bayesian nonparametric model with
Burr(XII) distribution as the kernel of a mixture model.

In Figure 4, panel (a), we show the histogram of the bladder cancer data, along with
the estimated density function based on the DPBM model. Since this dataset comes from
a weighted distribution, a histogram of the unweighted values obtained using the Metropolis-
Hastings method and the corresponding curve is presented in panel (b) of Figure 4.
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6. Conclusion

This article uses the Bayesian nonparametric approach to model weighted data. We
use the Dirichlet process mixture model (DPMM) with Burr(XII) distribution as the kernel
function in mixing models. We assumed weighted distribution with an arbitrary weight
function that satisfies equation (2). Using the Metropolis-Hastings algorithm, the weighted
distribution converted to the unweighted one. We fit the DPMM with the different kernels
and weight functions for real and simulated data sets as an application. As an application
in the survival study, a real lifetime dataset containing censored observations is used, and
density and survival functions are estimated.

7. Discussion

While the proposed Bayesian nonparametric model, the Dirichlet Process Mixture of
Burr XII distributions, provides substantial flexibility and robustness for modeling weighted
data, several limitations should be noted. First, the model’s computational complexity can
be high, particularly with large datasets or high-dimensional covariates, potentially hinder-
ing its scalability in practice. Second, the selection of hyperparameters and prior distribu-
tions may significantly affect performance and inference, necessitating careful tuning and
sensitivity analysis. Third, although the Burr XII distribution is flexible, there may be cases
where other kernel distributions might better capture certain data characteristics.

Future research could address these limitations by extending the model to incorporate
covariate information more explicitly, such as through hierarchical or dependent Dirichlet
processes, enhancing its utility in complex data settings. Additionally, developing more ef-
ficient computational algorithms, such as variational inference or scalable MCMC methods,
could improve the model’s feasibility for big data applications. Exploring integration with
other flexible distributions or developing multivariate extensions may further broaden its
scope and practical impact.
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